Biomimetic Hybrid Nanofiber Sheets Composed of RGD Peptide-Decorated PLGA as Cell-Adhesive Substrates
نویسندگان
چکیده
In biomedical applications, there is a need for tissue engineering scaffolds to promote and control cellular behaviors, including adhesion, proliferation and differentiation. In particular, the initial adhesion of cells has a great influence on those cellular behaviors. In this study, we concentrate on developing cell-adhesive substrates applicable for tissue engineering scaffolds. The hybrid nanofiber sheets were prepared by electrospinning poly(lactic-co-glycolic acid) (PLGA) and M13 phage, which was genetically modified to enhance cell adhesion thru expressing RGD peptides on their surface. The RGD peptide is a specific motif of extracellular matrix (ECM) for integrin receptors of cells. RGD peptide-decorated PLGA (RGD-PLGA) nanofiber sheets were characterized by scanning electron microscopy, immunofluorescence staining, contact angle measurement and differential scanning calorimetry. In addition, the initial adhesion and proliferation of four different types of mammalian cells were determined in order to evaluate the potential of RGD-PLGA nanofiber sheets as cell-adhesive substrates. Our results showed that the hybrid nanofiber sheets have a three-dimensional porous structure comparable to the native ECM. Furthermore, the initial adhesion and proliferation of cells were significantly enhanced on RGD-PLGA sheets. These results suggest that biomimetic RGD-PLGA nanofiber sheets can be promising cell-adhesive substrates for application as tissue engineering scaffolds.
منابع مشابه
Ternary Aligned Nanofibers of RGD Peptide-Displaying M13 Bacteriophage/PLGA/Graphene Oxide for Facilitated Myogenesis
Recently, there have been tremendous efforts to develop the biofunctional scaffolds by incorporating various biochemical factors. In the present study, we fabricated poly(lactic-co-glycolic acid) (PLGA) nanofiber sheets decorated with graphene oxide (GO) and RGD peptide. The decoration of GO and RGD peptide was readily achieved by using RGD peptide-displaying M13 bacteriophage (RGD-M13 phage) a...
متن کاملCell-adhesive RGD peptide-displaying M13 bacteriophage/PLGA nanofiber matrices for growth of fibroblasts
BACKGROUND M13 bacteriophages can be readily fabricated as nanofibers due to non-toxic bacterial virus with a nanofiber-like shape. In the present study, we prepared hybrid nanofiber matrices composed of poly(lactic-co-glycolic acid, PLGA) and M13 bacteriophages which were genetically modified to display the RGD peptide on their surface (RGD-M13 phage). RESULTS The surface morphology and chem...
متن کاملStimulating effect of graphene oxide on myogenesis of C2C12 myoblasts on RGD peptide-decorated PLGA nanofiber matrices
BACKGROUND In the field of biomedical engineering, many studies have focused on the possible applications of graphene and related nanomaterials due to their potential for use as scaffolds, coating materials and delivery carriers. On the other hand, electrospun nanofiber matrices composed of diverse biocompatible polymers have attracted tremendous attention for tissue engineering and regenerativ...
متن کاملRGD peptide and graphene oxide co-functionalized PLGA nanofiber scaffolds for vascular tissue engineering
In recent years, much research has been suggested and examined for the development of tissue engineering scaffolds to promote cellular behaviors. In our study, RGD peptide and graphene oxide (GO) co-functionalized poly(lactide-co-glycolide, PLGA) (RGD-GO-PLGA) nanofiber mats were fabricated via electrospinning, and their physicochemical and thermal properties were characterized to explore their...
متن کاملStimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices
BACKGROUND Electrospinning is a simple and effective method for fabricating micro- and nanofiber matrices. Electrospun fibre matrices have numerous advantages for use as tissue engineering scaffolds, such as high surface area-to-volume ratio, mass production capability and structural similarity to the natural extracellular matrix (ECM). Therefore, electrospun matrices, which are composed of bio...
متن کامل